

DDI: 001164 (0)4 479 3963 Mobile: 001164 (0)27 6413111 fire.aquacoustics.biz

FireNZE is a trading division of Aquacoustics Limited

Consulting Fire Engineers

34 Satara Crescent

Khandallah

Wellington, 6035

New Zealand

Linux Beowulf Cluster
 Infiniband Upgrade

for

Fire Dynamics Simulator (FDS)

12 September 2016
Revision 1.4
T. G. O’Brien

Table of Contents

1 Document Status ... 1

2 Infiniband Upgrade for FDS .. 2

2.1 Syntax .. 2

3 Purpose .. 4

4 Platform Description ... 5

5 Upgrade Path ... 6

6 Install the Operating System (OS) .. 7

6.1 Internet Access ... 7

6.2 Known Hosts .. 7

6.3 Housekeeping and Preferences ... 8

6.4 Lock the CPU Frequency ... 8

6.5 Upgrade and Update .. 8

7 Install the IB Hardware .. 9

8 Lock the Kernel .. 10

9 Install the OFED Support Packages ... 11

9.1 Install Software Packages .. 11

9.2 Mellanox OFED Installation .. 12

9.3 Subnet Manager ... 14

9.4 IB Testing ... 16

9.5 IB Performance Testing .. 17

10 Install nfs .. 19

11 Shared Directory .. 20

12 Install SSH .. 22

12.1 Generate Public/Private Key Pairs ... 22

12.2 Testing SSH ... 23

13 Install openmpi .. 25

13.1 Test the Path Environment Variables ... 27

13.2 openmpi TCP Tuning ... 27

13.3 Test openmpi.. 29

14 Local Node Backup ... 30

14.1 Restore/Recovery ... 30

15 Install FDS .. 32

15.1 Precompiled Bundle Installation ... 32

15.1.1 Test FDS .. 34

15.2 Compile and Install ... 35

15.2.1 Compile FDS .. 36

15.3 FDS Installation Problems .. 38

16 Cloning ... 39

16.1 Rename Node and Change IB IP Address ... 39

16.2 Auto-Mounts ... 39

16.3 Testing ... 40

17 Project Benchmarks .. 41

1

1 Document Status

The procedures in this document produce a verified FDS 6.5.2 installation on a
Beowulf Linux Cluster.

The installation is verified and fully stable for FDS simulation using both
OpenMPI and OpenMP.

The speed improvement achieved through the Infiniband upgrade is somewhat
model dependant however our internal benchmarks indicate a 10 to 30%
reduction in processing time from our earlier Gigabit Ethernet.

Further minor improvements are expected with OpenMPI tuning.

2

2 Infiniband Upgrade for FDS

A word of warning. I am a ‘Mainly Dangerous’ when it comes to Linux and
networks. The following upgrade procedure may not be efficient, optimized or
universal but it was effective for FireNZE’s Beowulf Linux cluster.

I am hoping that the ‘Elite’ Linux and networking guru’s out there will find fault
with this procedure and send me critical comment so it can be improved for
others that don’t want to mess with installation and just want to get on with
applying FDS to real fire engineering challenges.

This installation note is not about how to build and run Fire Dynamics Simulator
(FDS) models, or how to interpret the output. If you are wanting to learn about
FDS then you probably don’t want to be starting here. The FDS Users Manual
might be a better place to start.

Much of the following has been pieced together from .www searches, reading
package documentation (and in particular for FDS, ssh, openmpi and Mellanox
Infiniband), studying the Linux man (manual) for specific commands, with
assistance from the folk at NIST, and often through a process of trial and error.

Nothing here is new or unique but maybe having it all in one place will provide
you with a starting point from which you can develop an appropriate procedure
to upgrade your cluster hardware and software.

2.1 Syntax

I have tried to be at least self-consistent with syntax in this document.

Parameters in <italics> need to be replaced with appropriate input (or read as
appropriate output) for your installation without the <>.

Command line input in a Terminal application is shown preceded by an
abbreviated command line prompt (:~$ in most cases) and followed by the
typed command. The actual prompt will be of the form:

<user_name>@<node_name>:~$, ie ob1@Master:~$

Some of the input exceeds a single line in this document. I have added line
breaks at spaces and indicate the line continuation by tab indenting like this:

 :~$ This is the command
 and this is a continuationK
 and this is a further continuation

3

Note that input can often be simplified in Terminal by typing the first letter or
two of a file or directory in a command line followed by the [Tab] key.
Launching Terminal is either from the GUI (Graphical User Interface) task bar,
or more conveniently by pressing [Ctrl][Alt][T].

Many Linux files, commands and command options incorporate
underscores ‘_’, hyphens ‘-‘, and double hyphens ‘--‘, and mixing these up is a
common source of errors. For clarity I have placed a space between double
hyphens in this document ‘- -‘.

I tend to use gedit (Gnome Editor) for editing files but from time to time it may
be convenient (or necessary) to using a CLI (Command Line Interface) editor
such a nano.

Each of the computers in the cluster is referred to as a node.

When editing files it is a good idea to save a backup copy before you make a
mistake (foo-bah).

After you edit a file remember to save it. I have not explicitly described saving
files following editing in the following instructions.

In general system files (not located in user’s login directory path) will require
super user privileges for editing which requires a sudo command prefix.

This document necessarily incorporates a lot of jargon and Linux commands. I
have tried to define acronyms and expand on command syntax on first
reference, if for no other purpose than for my own education. If I missed
something that you found confusing then please let me know.

Each significant step in the installation procedure provides a definitive end point
where stuff can (and should) be tested. If stuff isn’t working as expected at an
end point then either you have made a mistake (this is one of the things that I
do best with Linux) or the procedure is not appropriate for your hardware or
software environment. You will need to revert to thinking about what you have
done and what is (or isn’t) occurring to resolve the problem.

4

3 Purpose

A significant contribution to the FDS processing time of my previous cluster was
the speed of the 1 Gb Ethernet LAN (Local Area Network). I have previously
estimated this to be about 25% of the total processing time although this is
somewhat model and allocated resource dependant.

Experiments with ssh (Secure SHell) and rsh (Remote SHell) showed no
significant reduction in the Ethernet communication overhead. The primary
issue was therefore attributed almost entirely LAN bandwidth and latency,
although there is also a CPU (Central Processing Unit, or core) overhead
associated with Ethernet communication.

Infiniband (IB) upgrade options were explored. A new IB switch, IB network
cards (called HCAs – Host Channel Adaptors) and cabling were prohibitively
expensive. I looked a second-hand options. While perhaps not state of the art,
used IB hardware could be purchased for a modest cost and should provide
substantial performance gains for my Linux cluster.

I purchased a second hand Mellanox 40 Gb/s 8 IS5022 eight port switch, four
Mellanox MHQH19B-XTR 40 Gb/s PCI 2 HCA cards, and four 3 m IB cables.

5

4 Platform Description

All four nodes are running water cooled Intel I7 quad core processors at
4.4 GHz with 16 GB of DDR3 RAM, Solid State Hard Drives (SSHD),
secondary 500 GB Hard Disk Drives (HDD) and 1 Gb/s Ethernet with Internet
connectivity. There are no expansion or graphics cards in the nodes. Figure 1
shows the basic cluster configuration with the IB network. Other Ethernet
networked components (workstations, printers, scanner, etc) are not shown for
clarity.

Figure 1. Basic Linux Cluster Configuration

Although the hardware is not server-grade it has demonstrated solid
performance and runs Prime95 and other torture tests without error over
extended timeframes (weeks) at ambient temperature extremes without failure.
While the system is quite capable of over-clocking beyond 5 GHz this pushes
the thermal limits of the motherboards and will accelerate component failure.
Your hardware needs to be robust for FDS processing as models may take
days or weeks to simulate.

Master
Linux

Slave0
Linux

Slave1
Linux

Slave2
Linux

Infiniband 40 Gb/s

Ethernet 1 Gb/s

192.168.0.4192.168.0.3 192.168.0.5 192.168.0.6

172.16.3.176 172.16.3.177 172.16.3.178

Ethernet 100 Mb/s
To other resources

To other resources

6

5 Upgrade Path

There are two upgrade paths that I considered. One is simply to upgrade a
single node, and then clone this to other nodes making minor adjustments as
necessary. While this is very efficient it does not allow for progressive testing
of the hardware and software so that an error in the installation process might
be difficult to solve.

I settled on the second path which is a concurrent installation on two nodes with
progressive testing, followed by cloning to other Slave nodes with appropriate
minor adjustments.

The upgrade is to be followed by software verification using at least the minimal
verification suite described in Appendix B of the FDS Users Manual.

7

6 Install the Operating System (OS)

The process started with a clean install of Ubuntu 16.04 LTS on two nodes.

http://www.ubuntu.com/download

Note: if you are using Intel compilers Ubuntu 16.04 is not listed as a supported
OS (at the time of writing) and you will need to revert to Ubuntu 14.04.

Ubuntu 16.04 is LTS (Long Term Support), it is free, it is compatible with the
Mellanox IB software, and the CLI and GUI are almost identical to
Ubuntu 14.04.

Note that while Ubuntu is inherently customizable (it can readily be reduced to
a server by removing and installing modules) there may be other Linux flavours
that provide increased processing speed for FDS.

During the OS installation script use different computer (node) names such as
Master, Slave0, but use a common user name and password. This will aid with
seamless connectivity between nodes.

6.1 Internet Access

We need internet access to download application software.

My Ethernet connection is already established from the previous installation
with DNS (Domain Name Server) Ethernet IP (Internet Protocol) addresses in
the range 192.168.0.<x>. assigned from a router based on node eth0 MAC
(Media Access Control) address during boot.

6.2 Known Hosts

For convenience we will want to address nodes over IB by name (Master,
Slave0, K). The use of aliases saves on typing and assists in preventing
mistakes.

Edit the ~/etc/hosts file on the Master and Slave0 nodes:

:~$ sudo gedit /etc/hosts

Include IP addresses and names for anticipated future nodes (even those these
may not yet exist):

127.0.0.1 localhost

172.16.3.175 Master
172.16.3.176 Slave0
172K

8

Note that the IP addresses here are somewhat arbitrary. I have used public
allocated address space even though the IB is actually inaccessible from the
Internet (it is a private LAN). The example in the Mellanox OFED Linux manual
uses IP addresses in the range 11.4.<x>.<x>.

6.3 Housekeeping and Preferences

With the basic OS installed there are some house keeping and customisation
tasks that you may want to perform. I’m running a GUI for development and
have some favourite applications that I like to have on hand.

Adjust the screen lock (always on, no login password, no time-out).

Add Terminal and System Monitor to the task bar.

Install Google Chrome (Chromium), my preferred browser.

Remove Firefox (sudo apt-get purge firefox) and some other bundled
applications that I never use.

Change the default screen background (I hate the Ubuntu default screen).

6.4 Lock the CPU Frequency

To prevent the OS from throttling the CPU frequency during low demand edit
/etc/init.d/ondemand:

 :~$ sudo gedit /etc/init.d/ondemand

Find the script line:

 echo –n $GOVERNOR > $CPUFREQ

and add the following line immediately above it:

 GOVERNOR=”performance”

6.5 Upgrade and Update

Ensure the OS and application installations are up to date.

 :~$ sudo apt-get update && sudo apt-get upgrade

The upgrade may report some redundant packages. These are readily
removed with:

:~$ sudo apt-get autoremove

9

7 Install the IB Hardware

Power down the nodes.

Install the IB HCAs in the Master and Slave0 nodes in appropriate PCI
(Peripheral Component Interconnect) slots on the mother boards noting the
HCA MAC addresses and other details from the manufacturer’s label (I
photographed these because the writing is pretty small). Reading this
information after the HCA cards are fitted is at best difficult.

Power up (reboot) and confirm that the OS can find the HCAs:

 :~$ lspci –v | grep Mellanox

 You’re looking for an ib0 designation. If it isn’t there then there is

something wrong with the hardware installation. Check that the PCI
slots are appropriately rated (PCI slots should be backward
compatible) and that the cards are properly seated.

Power up the IB switch and connect it to the HCAs (note the Mellanox switch
and HCA manuals advise that hot-plugging is okay).

With no HCA drivers installed the switch should show green LEDs for the status
and fan, but with no port LEDs. The HCA LEDs will be not be lit.

10

8 Lock the Kernel

The IB software (which we are about to install) is OS kernel version specific. If
we don’t lock the OS kernel modules they will automatically upgrade from time
to time and this may cause the IB network to fail (if for no other reason than
changes in the kernel name). Kernel updates are generally a good idea as they
often contain security fixes but upgrades require specific change management
with IB.

 :~$ sudo -s

 :~# for i in $(dpkg -l “*$(uname -r)*” | grep kernel | awk ‘{print $2}’);
 do echo $i hold | dpkg - -set-selections; done

 :~# exit

11

9 Install the OFED Support Packages

The IB drivers and software for the Mellanox hardware comes bundled in the
OFED (Open Fabrics Enterprise Distribution) available free from Mellanox.
This package includes the opensm subnet fabric management, firmware
upgrades, and a lot of other functionality.

http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_s
w_drivers

Also download the Linux Users Manual and Installation Notes for the OFED
version of your hardware and OS, and the HCA and switch manuals if you
haven’t already got them.

The Mellanox OFED.iso was downloaded from the Mellanox website for the OS
(Ubuntu 16.04) and the processor environment (x86-64) into the ~/Downloads
directory. Note the .iso checksum from the Mellanox downloads page as this is
used to validate the download.

Check the .iso download integrity:

 :~$ md5sum Downloads/MLNX_OFED_LinuxK K .iso

 The reported checksum should match the Mellanox download page

checksum.

The OFED must be installed on all nodes to provide each node with HCA
drivers and establish the IB Fabric stack.

9.1 Install Software Packages

The Mellanox OFED install requires a number of other packages as described
in the Release Notes. I have written these up in a table to check off the installs.

perl
dpkg
autotools-dev
autoconf
libtool
automake1.11
automake
m4
dkms
debhelper
tcl
tcl8.4
chrpath
swig

12

graphviz
tcl-dev
tcl8.4-dev
tk-dev
tk8.4-dev
bison
flex
dpatch
zlib1g-dev
curl
libcurl4-gnutls-dev
python-libxml2
libvirt-bin
libvirt0
libnl-3-dev
libglib2.0-dev
libgfortran3
pkg-config
libnuma1
logrotate
ethtool
gfortran

Note: I have added gfortran to the list and updated some of the package
versions.

You can use the Ubuntu apt-get (Advanced Packaging Tool) to install these
packages from the CLI but I prefer the GUI Synaptic Package Manager which
appears to a have more comprehensive repository resource .

:~$ sudo apt-get install synaptic

:~$ sudo synaptic

The package installation was followed by a further update and upgrade:

 :~$ sudo apt-get update && sudo apt-get upgrade

9.2 Mellanox OFED Installation

I have Mellanox IB hardware so I will be using their IB software for
compatibility.

13

The OFED installation requires specific options for Ubuntu in the install script
that are described in the OFED Linux Users Manual. Make sure you have the
correct version of the OFED Manual for your OFED version when determining
these requirements.

We want Internet Protocol over InfiniBand (IPoIB) with fixed IP addresses on
each node so we need to assign IP addresses to the HCA’s. We can assign IP
addresses manually on each node once the OFED is installed using:

 :~$ ipconfig ib0 172.16.3.<x> netmask 255.255.0.0

but we want IP addresses established on boot. We can add this requirement to
the OFED installation script through the - -net option.

Make a file on each node in the /etc/NetworkManager/system-connections
directory named ifcfg_ib0:

 :~$ sudo gedit /etc/NetworkManager/system-connections/ ifcfg_ib0

I placed this in the /etc/NetworkManager/system-connections directory which
seems appropriate for Ubuntu but the location is not important. The file content
should be similar to:

IPoIB Static IP Address Definition
 #Change the IPADDR_ib0 parameter for each node
 #Note: do not add spaces in the script lines

IPADDR_ib0=172.16.3.<x>
NETMASK_ib0=255.255.0.0
NETWORK_ib0=172.16.0.0
BROADCAST_ib0=172.16.255.255
ONBOOT_ib0=1

You will see that I have used an IP address range to match the known hosts
(above) rather than those specified in the Mellanox OFED Linux Users Manual.

We need to confirm the kernel version and note if for the OFED install:

 :~$ uname –r (or –a)

Mount the Mellanox OFED.iso image from the Downloads directory:

 :~$ cd Downloads

:~/Downloads$ sudo mount -o ro,loop MLNX_OFED_LINUXK K .iso
 /mnt

Change directory to the mounted .iso:

 :~$ cd /mnt

14

Confirm the mounted file structure:

 :/mnt$ dir

or

 :/mnt$ ls -al

Now run the OFED installation script from the /mnt directory as a super user,
inserting the appropriate kernel version for your OS noted above:

 :/mnt$ sudo ./mlnxofedinstall - -without-dkms - -add-kernel-support
- -kernel <4.4.0-35-generic> - -without-fw-update
- -net /etc/NetworkManager/system-connections/ifcfg_ib0
 - -force

During the installation note the location of the installation log file. You may
need to read this if the install fails. There is lots of text output during the
installation which is impossible to read in real time.

The OFED software installs binaries and library components by default in the
/usr directory in /usr/sbin and /usr/lib. These directories are in the default
Ubuntu PATH environment variable.

With Mellanox OFED installed, reboot the nodes.

We can check that the IP address has been assigned to the HCA cards by
running:

 :~$ ifconfig

To check the install run:

 :~$ /etc/infiniband/info

which should report the installed OFED version.

Observe the LEDs on the HCAs and the switch. The HCA LEDs should show
solid green indicating a valid hardware connection without traffic. The switch
should show solid green for the status and fan LEDs, and the connected port
LEDs should show solid yellow (physical connection, no traffic).

9.3 Subnet Manager

The Mellanox IS5022 switch is externally managed and therefore requires
external subnet fabric management software which must reside on at least one
node in the cluster (note that the cluster is a single subnet).

15

At this time we are still not running the subnet manager, opensm, which
comes with the OFED. The subnet manager searches and configures the IB
Fabric for communications. If there are multiple installations of opensm on
many nodes in a subnet only one instance will be active. The others will remain
idle. opensm can be run from the command prompt on any or all nodes with:

 :~$ opensm

It can also be started as a daemon with:

 :~$ sudo /etc/init.d/opensmd start

or

 :~$ sudo service opensmd start

We want the opensmd daemon to start on the Master node when we boot our
cluster without having to launch it manually.

Note that this can be a bit of a challenge for Ubuntu 16.04 because the
associated opensmd scripts are configured for SystemV and Ubuntu 16.04
uses Systemd (System Daemon) which, while backwardly compatible with
SystemV, doesn’t provide an easy way of changing the boot-status of the
legacy daemon scripts.

After much experimentation I installed sysv-rc-conf:

 :~$ sudo apt-get install sysv-rc-conf

To view the installed daemon status run:

 :~$ sudo sysv-rc-conf - -list

You will see that opensmd is installed but has no assigned run-levels so it will
not run on boot. We can activate it on the Master node with default run levels
of 2345 using:

 :~$ sudo sysv-rc-conf opensmd on

Reboot and the Master will now run opensmd at boot and establish the IB
Fabric.

With opensm running check the port status LEDs on the switch and the HCAs.
The HCAs should shown green and solid yellow. The connected switch port
LEDs should be solid green.

16

9.4 IB Testing

In order to be assured that we are testing the IB network the following tests
should be done both with and without the backplane Ethernet connection.
Either physically disconnect it or remove power from the Ethernet switch to
isolate the IB.

We can now examine the status of the IB network using the following
commands from either node (refer to the Mellanox Linux User’s Manual for a
detailed description of what these commands are actually doing and reporting):

 :~$ ibstatus
 :~$ ibstat
 :~$ ibnetdiscover
 :~$ ibhosts
 :~$ iblinkinfo

ibstat returns the GUID (Globally Unique IDentifier) and the LID (sub-net Local
IDentifier assigned by the subnet manager). We can use these identifiers to
initiate ibping to test the network connectivity.

On each node run:

 :~$ ibstat

to confirm that a fixed IP address has been assigned to ib0. Note the GUID
and the LID of the nodes. Be aware that the LID in particular is allocated
dynamically and may change for a particular node with many nodes on the
subnet depending on the boot order.

Run ibping as a server on a node:

 :~$ ibping –S

Go to the other node (client) and run:

 :~$ ibping <LID>

or

 :~$ ibping –G <GUID of ibping server>

or

 :~$ ibping -f <LID>

 [Ctrl][C] to exit and show statistics.

We can also exercise IPoIB using ping.

17

:~$ ping Slave0 (or Master)

or

 :~$ sudo ping –f Slave0 (or Master)

 [Ctrl][C] to exit

Everything going well during ping sessions the green switch port LEDs and the
yellow HCA LEDs will be flickering indicating IB traffic.

Note that while ping and ibping prove network connectivity they also provide
packet metrics I can’t find a meaningful way of comparing these. We will use
other tests to establish IB fabric network performance shortly.

Our basic IB network is now up and running with native IB and IPoIB
connectivity.

9.5 IB Performance Testing

We can test the IB performance using the following utilities that are installed
with the Mellanox OFED:

 :~$ udaddy on server
 :~$ udaddy –s <server> on client

 :~$ ib_read_bw –a on server

:~$ ib_read_bw –a –F <server> on client

 :~$ ib_write_bw –a on server

:~$ ib_write_bw –a –F <server> on client

 :~$ ib_read_lat –a on server

:~$ ib_read_lat –a -F <server> on client

 :~$ ib_write_lat –a -F on server

:~$ ib_write_lat –a -F <server> on client

Note that these commands are all run in client/server pairs. The -a parameter
on the ib_... commands will run the command with packet sizes from 2^1
through to 2^23. The -F parameter will suppress frequency alignment warnings
between the server and the client. Even though we have locked the CPU
frequency at performance there may still be minor speed differences between
nodes.

The reported bandwidth (read and write) for my IB Fabric was over 24 Gb/s.
While this appears to be somewhat lower than the 40 Gb/s rating of the switch
and HCAs, the aggregated throughput of 10 Gb/s QDR (Quad Data Rate)
hardware with 8/10 encoding is about 32 GB/s.

18

Further, the actual performance can undoubtedly be improved by tuning OFED
parameters but I won’t be going there just now.

If you have previously disconnected the Ethernet network then now is a good
time to reconnect it.

19

10 Install nfs

This step is essential for FDS. The FDS Users Manual states ‘The MPI version
of FDS requires shared disk access to each computer where cases will be run.’
Failure to complete this step will prevent openmpi running between nodes.

Install nfs-client on both nodes:

 :~$ sudo apt-get install nfs-common

Install nfs server on the Master node (we can install the sever on both nodes
but it will only be invoked on the Master):

 :~$ sudo apt-get install nfs-kernel-server

Reboot.

Test for nfs operating system support on both nodes:

 :~$ cat /proc/filesystems | grep nfs

 Displays: nodev nfs
 nodev nfs4
 nodev nfsd

Test for portmap listing on both nodes:

 :~$ rpcinfo –p | grep portmap

 Displays: 100000 4 tcp 111 portmapper
 100000 4 udp 111 portmapper
 100000 K

20

11 Shared Directory

Now we’re going to make a shared directory where our FDS model files will
reside, hosted from the Master node.

Make a ~/Projects directory on the Master and Slave0 nodes using either the
File Manager tool or from the command line:

 :~$ mkdir Projects

Set the Projects directory permissions to 777.

 :~$ sudo chmod –R 777 Projects

Insert the export directory on the Master node in /etc/exports:

 :~$ sudo gedit /etc/exports

 and add the directory to be exported:

 /home/$USER/Projects 172.16.3.0/24(rw,async)

Note: we can be more specific or more general about the export locations by
either specifying specific Node names or a universal IP address range by
replacing 172/16.3.0/24(rw,async) with:

Slave0(rw,async) Slave1(rw,async) K

or

 *(rw,async)

Note: there are other nfs options for the export (refer to the associated man
pages). The no_root_squash, sync and no_subtree_check options seem to
cause problems with SmokeView and FDS causing program termination and
segmentation errors. More experimentation and thought is required here to
work out what is actually occurring.

On the Slave0 node auto-mount the shared Master Projects directory:

:~$ sudo gedit /etc/fstab

add:

Master:/home/<user_name>/Projects /home/<user_name>/Projects nfs
defaults 0 0

Reboot the nodes.

21

Test for Master exports on the Master node:

 :~$ showmount -e Master

 Displays: Export list for Master:
 /home/<user_name>/Projects *

or

 :~$ sudo exportfs -ra

 Test that files and directories in the ~/Projects directory are correctly
maintained across all nodes on an alteration, addition or deletion on any node.
Use File Manager or the command line from a Terminal to insert, append, and
delete sub-directories and files on any node and observe that the action is
repeated on the other node. Use [Ctrl][R] to refresh the client node Projects
directory content display in the GUI File Manager. The Master should
automatically refresh the display for changes made on the client nodes.

 Note: Ubuntu will place a black box on the client Slave0 node Projects

directory icon in the quick launch task bar and in File Manager – but there will
be no change to the Master Projects directory icon (it will look just like a normal
folder). If this changes then you may have inadvertently invoked Samba or
some other Windows network share. This may cause problems down the track.

 Note: concurrent access to a single file on more than one node may result in a

file system conflict. This can also occur when running FDS if we access an
active (simulating) Projects sub-directory from a Slave node which may cause
the Master node to crash. Hence viewing running simulation output files or
running SmokeView should be restricted to the Master node. This rule is easily
applied on my cluster because in normal operation only the Master node has a
keyboard and monitor.

We can run some metrics on the file share over IB on client nodes (see
http://nfs.sourceforge.net/nfs-howto/ar0s05.html for a description).

 :~$ time dd if=/dev/zero of=Projects/testfile bs=16k count=16384

followed by:

:~$ time dd if=Projects/testfile of=/dev/null bs=16k

My metrics with the default bs=16k were build/writes at ~355 MB/s and
read/remove at 10 GB/s.

22

12 Install SSH

We need to install ssh (Secure SHell) on the nodes as this is required by
openmpi (Open Message Passing Interface) for setting up and breaking down
MPI parallel processes.

ssh connections must be password-less and silent on non-interactive login
between all nodes. Failure to establish this is a common cause of error with
openmpi installations.

Ubuntu 16.04 comes bundled with openssh-client. Test the package availability
on both nodes with:

 :~$ dpkg –l | grep openssh

If you need to install (or reinstall) openssh-client then:

 :~$ sudo apt-get install openssh-client

Now install openssh-server on both nodes:

:~$ sudo apt-get install openssh-server

12.1 Generate Public/Private Key Pairs

We need to configure ssh to enable password-less access between any two
nodes. We do this by generating public/private key pairs on both the Master
and the Slave0 nodes.

Note: Ubuntu 16.04 requires the use of rsa as opposed to dsa encryption by
default.

:~$ ssh-keygen -t rsa

Use default file locations.

Use a blank passphrase.

Copy id_rsa.pub to <node_name>.pub.

:~$ cd .ssh

:~/.ssh$ cp id_rsa.pub <node-name>.pub

Copy Slave0.pub from the Slave0 node to the Master node either through File
Manager using the nfs shared Projects directory or using scp (secure copy):

 :~/.ssh$ scp Slave0.pub <user_name>@Master:.ssh

23

Build authorized_keys on the Master.

:~/.ssh$ cat Master.pub Slave0.pub id >> authorized_keys

Change file permissions of ~/.ssh/authorized_keys on the Master node.

:~$ chmod 600 ~/.ssh/authorized_keys

Note that ssh is very particular about file and directory permissions. If they are
not correct then authorized_keys may be ignored and we won’t get
password-less login. The .ssh directory should have been generated on both
nodes with 700 permissions. You can check permissions with the command:

 :~$ ls –al

The permission value is a 9 bit mask so 700 corresponds with xrw- - - - - - and
600 corresponds with rx- - - - - - -. If ~/.ssh has the wrong permissions you can
modify it with the command:

 :~$ chmod 700 ~/.ssh

Now copy authorized_keys from the Master to ~/.ssh on Slave0 either using
File Manager through the shared Projects directory or using scp:

:~/.ssh$ scp authorized_keys <user_name>@Slave0:.ssh

Reboot both nodes.

12.2 Testing SSH

Note that on first ssh login to a remote node you will be asked to confirm:

The authenticity of host <111+ +.111> can't be established. ECDSA

key fingerprint is <fd:fd:... +22:fe>. Are you sure you want to continue

connecting (yes/no)?

 Type: yes [Enter]

 Test connectivity between nodes through ssh without passwords.

:~$ ssh <node>

where <node> is Master or Slave0 from either Master or Slave0

:~$ exit or ~$ ~. to close a remote terminal session.

24

With non-interactive login, test that the ssh sessions are silent.

 :~$ ssh <node> echo “Test”

should only return “Test” without login details.

At this stage ssh should be working over the IB Fabric.

25

13 Install openmpi

openmpi needs to be installed on all nodes. There are no precompiled
openmpi binaries for the Linux distribution of FDS with IB support. Therefore
the source files need to be compiled from the openmpi source distribution.

For FDS 6.5.2 we need openmpi 1.8.4 (more recent releases of openmpi have
compatibility issues with FDS that are being worked on).

FDS expects to find the openmpi installation directory at /shared/openmpi_64
for non-IB installs, and /shared/openmpi_64ib for IB installs. It is recommended
that you use the FDS default directories. openmpi needs to be installed in the
same location on all nodes.

Install the gnu c++ complier (g++ 4:5.3.1) to the ~/Downloads directory using
either Software Centre or Synaptic Package Manager.

Note that NIST uses the Intel compiler suite for both FDS and openmpi, but the
openmpi Installation Instructions use the gnu compiler by default. This did not
cause problems on the previous Ethernet install and a good reason for using
gnu (provided that it works for your installation) is that the Intel compiler is not
free for commercial applications.

On both nodes:

Download the openmpi-1.8.4.tar.gz from www.open-
mpi.org/software/ompi/v1.81 into the :~/Downloads directory

Extract the tar-ball using File Manager into the ~/Download directory.

Change directory to :~/Downloads/openmpi-1.8.4

:~$ cd Downloads/openmpi-1.8.4

Set up the configuration file for the installation. We are going to include options
for the installation directory and to force IB support.

:~/Downloads/openmpi-1.8.4$./configure
- -prefix=/shared/openmpi_64ib
- -with-verbs= /usr

Note that ‘verbs’ is the appreciated (opposite of depreciated) option for ‘openib’.
There are other installation options that may affect the performance and
operation of openmpi. If there are problems with the install or operation then
looking at the installation options may be a good place to start.

There will be lots of screen output and this will take some time.

Next, run the make file (this compiles the binary files for installation)

26

:~$Downloads/openmpi-1.8.4$ make

More text output and more time (enough for a coffee perhaps).

Now install the compiled binaries:

:~$/Downloads/openmpi-1.8.4$ sudo make install

More text output K

We need to add openmpi and its libraries to the PATH and
LD_LIBRARY_PATH environment variables on both nodes.

Note that the precedence and the names of script files that set up environment
variables depend on your Linux flavour and whether the shell session is
interactive or non-interactive (and other stuff such as the type of login). This
aspect of Linux and the reasons behind it are complicated. There are many
useful descriptions of the process. http://mywiki.wooledge.org/DotFiles is a
good starting point.

A normal ssh login to a remote node (for example :~$ ssh Slave0 from the
Master node is an interactive login. But an ssh login with a script file or
command (for example :~$ ssh Slave0 echo $PATH) is non-interactive.

For Ubuntu 16.04 we can alter our environment variables in the ~/.bashrc file
provided that we place any script lines above the default 5th line which starts
with the comment:

If not running interactively don’t do anything.

This can result in doubling up on path variables on initial interactive login
following boot (a non-interactive logon) but this is not important as the second
instance will be ignored. This is far less of an issue than a non-interactive login
that doesn’t set the environment variables.

On both Master and Slave0 nodes edit :~$.bashrc:

 :~$ gedit .bashrc

 Above line 5 add:

 PATH = “$PATH: /shared/openmpi_64ib/bin”

LD_LIBRARY_PATH
=”$LD_LIBRARY_PATH:/shared/openmpi_64ib/lib”

Reboot both nodes to set the new environment variables.

27

13.1 Test the Path Environment Variables

This simple step is very important. Path issues are a frequent cause of
openmpi and FDS problems.

 :~$ echo $PATH
 :~$ echo $LD_LIBRARY_PATH

 check for /shared/openmpi_64ib/bin and shared/openmpi_64ib/lib

Now login from the Master to the Master and Slave0 nodes and visa-versa
with ssh and try the same commands. For example:

 :~$ ssh Master
 :~$ echo $PATH
 :~$ echo $LD_LIBRARY_PATH
 :~$exit

Now try the non-interactive login from Master to the Master and Slave0 and
visa-versa:

 :~$ ssh Master echo $PATH

:~$ ssh Master echo $ LD_LIBRARY_PATH

In each instance the PATH and LD_LIBRARY_PATH environment variables
must include /shared/openmpi_64ib/bin and /shared/openmpi_64ib/lib. If
they appear twice (and they probably will for the first test) then that’s fine but
if they don’t appear at all then there is a problem that needs to be resolved.

A useful technique for solving path issues is to incorporate:

 echo “I did <Name_of_Script_File> ”

commands in each of the login script files. These files include:

 :~/.bash_profile
 :~/.bash_login

:~/.profile
:~/.bashrc

This list is not definitive. Some of these files may not exist in the default OS
install and there may be other script files that are run.

13.2 openmpi TCP Tuning

During the development of this procedure FDS initially refused to run under
openmpi between nodes. The program hung during openmpi initialization
immediately after allocating meshes to processes.

28

FDS would run fine under openmpi and/or openmp on a single node. By
disconnecting the Ethernet it became apparent that openmpi was trying to
utilize Ethernet IP nodes that I had not defined.

After much trial and error, research and thinking about what was and wasn’t
happening I found that the cause of the problem was openmpi’s aggressive use
of what it considered to be available network resources. The issue is
documented at Issue 7 in https://www.open-mpi.org/faq/?category=tcp#tcp-
selection which states in part:

Unless otherwise specified, Open MPI will greedily use all "up" IP networks that it

can find and try to connect to all peers upon demand (i.e., Open MPI does not

open sockets to all of its MPI peers during MPI_INIT -- see this FAQ entry for

more details). Hence, if you want MPI jobs to not use specific IP networks -- or not
use any IP networks at all -- then you need to tell Open MPI.

NOTE: Aggressively using all "up" interfaces can cause problems in some cases.

For example, if you have a machine with a local-only interface (e.g., the loopback

device, or a virtual-machine bridge device that can only be used on that machine,

and cannot be used to communicate with MPI processes on other machines), you

will likely need to tell Open MPI to ignore these networks. Open MPI usually

ignores loopback devices by default, but other local-only devices must be

manually ignored. Users have reported cases where RHEL6 automatically

installed a "virbr0" device for Xen virtualization. This interface was automatically

given an IP address in the 192.168.1.0/24 subnet and marked as "up". Since Open

MPI saw this 192.168.1.0/24 "up" interface in all MPI processes on all nodes, it

assumed that that network was usable for MPI communications. This is obviously

incorrect, and it led to MPI applications hanging when they tried to send or receive
MPI messages.

The key issue here is highlighted in bold in the NOTE. Ubuntu 14.04 and 16.04
both install a virbr0 device by default. It is a Virtual Bridge interface used for
NAT (Network Address Translation). It is provided by the libvirt library and
used by virtual environments to connect to an outside network.

You can confirm the presence of the virtr0 device by running:

 :~$ ifconfig

So we must instruct openmpi not to use this device. This can be done at run
time by setting the following MCA (modular Component Architecture) BTL (Byte
Transfer Layer) parameter in the mpirun command:

 :~/Projects$ mpirun - - mca btl_tcp_if_exclude virbr0 K

This leads to very long mpirun commands which are prone to error however we
can set this parameter in ~/.bashrc:

 :~$ gedit .bashrc

29

Above # If not running interactively don’t do anything. Insert the
following two lines:

 OMPI_MCA_btl_tcp_if_exclude=”virbr0”
 export OMPI_MCA_btl_tcp_if_exclude

13.3 Test openmpi

If the path environment variables are good then we can test the openmpi install
from the command line in Terminal. Start with:

 :~$ mpirun

reports that there is nothing to do, and

:~$ mpirun - -version

reports the openmpi version.

Now compile the connectivity_c, hello_c and ring_c programs in the unpacked
/Downloads/openmpi-1.8.4/examples directory.

:~$ cd Downloads/openmpi-1.8.4/examples

 :~/Downloads/openmpi-1.8.4/examples$ make

Then run the connectivity_c, hello_c, and ring_c test cases on each node:

 :~/Downloads/openmpi-1.8.4/examples$ mpirun –np 4 <test_case>

Try running them between nodes:

:~/Downloads/openmpi-1.8.4/examples$ mpirun –np 4
 –host <other_node> <test_case>

Try running them on both nodes:

:~/Downloads/openmpi-1.8.4/examples$ mpirun -np 8
-host Master,Slave0 <test_case>

Output should conform to the descriptions at https://www.open-
mpi.org/community/lists/users/2012/03/18846.php. There are other tests that
you might want to run too, but if we have IB connectivity between nodes, can
launch openmpi processes on all nodes from any node through ssh, and
communicate openmpi processes between nodes then the openmpi installation
should be complete.

30

14 Local Node Backup

If you have got to this stage you should have a working IB network, a ~/Projects
directory shared between nodes through nfs over IB, ssh password-less logon
between nodes over IPoIB, and openmpi running over IB.

Now is a good time to make a backup of the Master and Slave0 nodes. This
allows painlessly restoration of either node to a known state without having to
reinstall everything from scratch.

There are a number of backup tools that you might consider such as Clonezilla.
I found the user interface of this program to be somewhat user unfriendly and
unintuitive.

I used the Linux dd command to produce an exact image of my installation
drive (including formatting) on the second internal hard drive. You can also
save the image to a portable USB HDD (Hard Disk Drive). Note that the target
drive must be at least the same size or larger than the source drive.

On each node first identify the drives:

 :~$ sudo lsblk

Identify the OS installation disk (the source), the location where you want to
store the disk image (the target), and the target mount directory (usually in
/media/<user_name>/<drive_UUID>). Drive identifiers will be similar to hda,
hdb, sda, sdb, ...

Change directory to the target drive mount point:

 :~$ /media/<user_name>/<drive_UUID>

Now run dd to make the image:

:~$ /media/<user_name>/<drive_UUID>$ sudo dd
if=/dev/<Drive_Identifier> of= ./<Image_Name>

Use something meaningful for the Image Name such as MasterImage4Aug16.

The image process will take some time depending on the size of the source
drive as it is copying every Byte on the drive, whether or not it is actually being
used. On completion dd will report the number of Bytes transferred and the
average transfer speed.

14.1 Restore/Recovery

A critical aspect of any backup regime is the ability to restore in a crisis. Many
folk make backups and never test them, only to find that, after a disaster, they
never really had a backup at all. So test your restore.

31

Power down the node. Connect a Ubuntu live USB stick (the one that you used
for the OS install is fine) and the USB HDD if you saved the image to an
external drive.

During the POST (Power On Self Test) press [Delete] to access the BIOS.
Change the boot priority in the BIOS to the USB stick. Save [F10] and reboot
[Enter].

From the Ubuntu screen prompt select the ‘Try Ubuntu without installing’
option.

Open a Terminal application [Ctrl][Alt][T].

Identify the source and target drives:

 :~$ sudo lsblk

Change directory to the source drive (where your image is):

 :~$ /media/ubuntu/<drive_UUID>

Check that you can see your image file:

 :/media/ubuntu/<drive_UUID>$ dir

Now run the dd command to restore the image:

:~$ /media/Ubuntu/<drive_name>$ sudo dd if=./<Image_Name>
of=/dev/<Drive_Identifier>

At the completion of the restore your screen output may be just a plain prompt
or a Grub2 rescue menu. Don’t panic quite yet!

Power down, remove the Ubuntu USB boot stick and any external drives.

Reboot to the BIOS. During the POST (Power On Self Test) press [Delete].

Change the boot priority to the Ubuntu HDD, save [F10] and reboot [Enter].

All going well you will have recovered your system from the image, probably in
less than 20 minutes.

32

15 Install FDS

FDS needs to be installed on all nodes in the same directory. We need a Linux
version with openmpi support, and perhaps openmp too.

The install can be completed on every node but it is more efficient to install
FDS on a single node and then copy the resulting installation directories and
path script files to other nodes.

It is recommended that, before the FDS installation, you should read:

the FDS Users Manual, and in particular the sections on installation
and running FDS. FDS users will be familiar with this document.
the Installing and Running FDS on a Linux Cluster document:
https://github.com/firemodels/fds-smv/wiki/Installing-and-Running-FDS-
on-a-Linux-Cluster

the Installing Open MPI on a Linux Cluster document:
https://github.com/firemodels/fds-smv/wiki/Installing-Open-MPI-on-a-
Linux-Cluster

the FDS Compilation document: https://github.com/firemodels/fds-
smv/wiki/FDS-Compilation

and perhaps browse through the associated Issues pages and release
notes.

There are two approaches to the FDS install:

a precompiled bundle (note that the link and name will change as FDS
and SmokeView are upgraded over time).
https://github.com/firemodels/fds-smv/releases/download/Git-
r16/FDS_6.5.2-SMV_6.3.12_linux64.sh

or as a system-specific compilation from source code.

The precompiled bundle installation is relatively straight forward and is arguably
preferable assuming that FDS runs without error. However the precompiled
binaries will not always result in stable FDS performance because they were
compiled on NIST platforms with specific hardware and software resources that
are unlikely to be identical to yours.

In any case some folk install the precompiled bundle, as a fast method of
setting up default directories and script files, even if they intend to compile FDS.

15.1 Precompiled Bundle Installation

I recommend that you try the precompiled FDS-SMV precompiled bundle first.
The NIST instructions are clear (even I could follow them).

33

Note that this will install SmokeView, and FDS with openmp and openmpi
support (assuming the later is installed and the expected default directory).

Download the precompiled bundle using your favourite browser from:

https://github.com/firemodels/fds-smv/releases/download/Git-r16/FDS_6.5.2-
SMV_6.3.12_linux64.sh

Go to the :~/Downloads directory:

:~$ cd Downloads

Run the installation shell script using bash:

:~/Downloads$ bash FDS_6.5.2-SMV_6.3.12_linux64.sh

You will be prompted to confirm the install [Enter] and the installation directory
[1][Enter] where upon FDS should be installed in the :~/FDS/FDS6 directory.

FDS will append some scripts at the end of ~/.bashrc which, in conjunction with
:~/.bashrc_fds, will create a number of environment variables and adjust the
PATH and LD_LIBRARY_PATH to incorporate the necessary directories for
both FDS and openmpi.

The installation will detect the presence of openmpi if it has been installed in
either :/shared/openmpi_64 for non-IB installs, or :/shared/openmpi_64ib for IB
installs, and adjust the path variables for this.

Reboot to set the environment variables and try running FDS from the
command line on the installation node

:~$ fds

 Reports version, openmp and openmpi status.

Press [Enter] to exit.

While FDS isn’t actually doing anything useful and is only operating on a single
node, if the FDS executable file isn’t found then there was either an installation
problem or (more likely) there is a problem with the PATH and
LD_LIBRARY_PATH. You may need to edit :~/.bashrc and :~/.bashrc_fds to
correct this.

We need to add some additional environment variables to the ~/.bashrc_fds file
for openmp and openmpi:

 :~$ gedit .bashrc_fds

 At the end of the file you will find:

34

OMP_NUM_THREADS= 4

Adjust this line if you need to change the default number of openmp threads.
openmpi gives better performance than openmp so a smaller number might
such as 2 might be a better default. We can always change this at run time
through the openmpi command line –x directive which passes environment
variables to the executable program running under openmpi.

Immediately following OMP_NUM_THREADS= 4 add:

 OMP_STACKSIZE=200M
 ulimit –s unlimited

Note: While it is possible to set the application memory size software limit
(ulimit) in /etc/security/limits.conf this does not ensure that appropriate memory
limits are set for non-interactive login through ssh resulting in SEGSIGV error
174 for modest sized meshes. The reason is that this file is only read by PAM
(Pluggable Authentication Modules for Linux) which is not accessed for ssh
login.

We can also tidy up the PATH and LD_LIBRARY_PATH variables by removing
the openmpi PATH and LD_LIBRARY_PATH assignments that we made earlier
in ~/.bashrc file. Note that these variables will now be set in the ~/.bashrc_fds
script file.

 :~$ gedit .bashrc

 Above line 5 remove (or comment out with #):

 PATH = “$PATH:/shared/openmpi_64ib/bin”

LD_LIBRARY_PATH =”$LD_LIBRARY_PATH:
/shared/openmpi_64ib/lib”

Copy the :~/FDS/FDS6 directory (and sub-directories), the :~/.bashrc and the
:~/.bashrc_fds files to the same locations on Slave0 either using the shared
:~/Projects file through File Manager, or from the command line.

 :~$ scp –r FDS <user>@Slave0:

:~$ scp .bashrc <user>@Slave0:

:~$ scp –r .bashrc_fds <user>@Slave0:

15.1.1 Test FDS

Reboot and set about testing a multi-mesh fds model under openmpi on the
Slave0 node and on both nodes assigning multiple node resources.

35

To reiterate, this installation note is not about how to build and run FDS models,
or how to interpret the output.

However the test model needs to have at least as many meshes as the number
of openmpi processes that you wish to run. Typically this will be at least the
number of physical cores on both nodes.

Note that the model must reside in or under the shared ~/Projects directory and
either the model path must be explicitly stated, or the openmpi command
should be run from the model directory. The general form of the openmpi
command line is:

mpirun –x OMP_NUM_THREADS=<X> -np <Y> -host
<node_name>,<node_name>,K fds <model_name>.fds

where X is the number of openmp threads and Y is the number of openmpi
processes.

While testing you should be specifically looking for numerical instability,
segmentation errors and other program stability errors such as excessive
processing time or stalling/hanging.

If you run System Monitor in the GUI or a command line utility such as htop on
a separate Terminal application you will see how systems resources are being
used during the simulation.

If the test models runs to completion then you should be comparing the output
with a proven model. The FDS verification suite contains a number of such
models complete with documented output and tolerances. See
https://github.com/firemodels/fds-smv/wiki/FDS-Verification-Process

15.2 Compile and Install

On my cluster the precompiled FDS bundle worked reliably once I had resolved
the MCA TCP tuning issue (see 13.2 above).

So far we have used the gnu compiler suite because some of our existing
software instructions recommend this, and because it is free. NIST uses Intel
compilers for their packaged FDS binaries, although they provide gnu source
code for FDS with openmpi (but without IB).

In a perfect world all compilers would produce equivalent code but this is not a
perfect world.

We have the gnu compiler suite installed already. FDS has software version
control and development managed by GIT. GIT is apparently a very powerful
system but it is challenging for folk migrating from other software management
systems, and some of us do not even have this step-up. Hence we must revert

36

to following the instructions provided by NIST somewhat blindly and think,
research and seek help if stuff falls over.

Start by reading https://en.wikipedia.org/wiki/Git and
https://github.com/firemodels/fds-smv/wiki/Git-Notes-Getting-Started

Install Git on the Master node. If you fail to complete this step the you will not
be able to compile the FDS source code even if you have copied it from the
GitHub repository.

 :~$ sudo apt-get install git-all

Reboot.

Now we configure git so it knows who we are:

 :~$ git config –global <user.<name>

 :~$ git config –global <user>.<email>

 :~$ git init /home/<user>/.git/

Now ‘clone’ the NIST repository. We can also ‘fork’ the repository but as you
might expect these operations are different. Fork produces a dynamically
updated local repository linked to the master repository. This is of particular
interest to developers because it allows the modifications to be returned to the
master repository through a process referred to as a pull request.

We need a local clone in order to compile FDS. This can be completed with:

 :~$ git clone http://github.com/fdsmodels/fds-smv

This will produce a directory :~/fds-smv which is a clone (copy) of the repository
at the time the clone was made.

15.2.1 Compile FDS

Compilation proceeds as follows. Identify and navigate to the appropriate
directory in ~/fds-smv/FDS_Compilation which contains a description of the
intended install options. For this install we head to mpi_gnu_linux_64:

 :~$ cd fds-smv/FDS_Compile/mpi_gnu_linux_64

If you look at the contents you will see that this contains a single script file
named make_fds.sh. To compile FDS:

 :~/ fds-smv/FDS_Compile/mpi_gnu_linux_64$ bash ./make_fds.sh

37

Note that this particular compilation script there is no native IB support and
openmp is not installed. This is not necessarily a problem because all of our
communications will be over IB and openmpi will almost always provide faster
processing than openmp provided that we have a sufficient number of meshes
in the FDS model.

Any compilation errors will require research and/or support. Note that the
compilation script calls the makefile in the ~/fds-smv/FDS_Compilation
directory which sets the compilation options. You can examine these by
opening the makefile and looking for the lines with the prefix:

mpi_gnu_linux-64 :

and

mpi_gnu_linux-64_db :

The resulting fds executable file will be in the
:~/ fds-smv/FDS_Compile/mpi_gnu_linux_64 directory, but note that it will be
named fds_mpi_gnu_linux_64 and not fds.

For compatibility with the pre-installed binary FDS file structure (including the
path variables) rename or delete any existing fds executable file in the
:~/FDS/FDS6/bin directory:

 :~$ cd FDS/FDS6/bin

 :~/FDS/FDS6/bin$ rm fds

Now copy the newly compiled executable file to this directory and rename it fds:

 :~$ cd ~/fds-smv/FDS_Compile/mpi_gnu_linux_64

:~/fds-smv/FDS_Compile/mpi_gnu_linux_64$
mv fds_mpi_gnu_linux_64 ~/FDS/FDS6/bin/fds

or

:~/fds-smv/FDS_Compile/mpi_gnu_linux_64$ cp –f

fds_mpi_gnu_linux_64 ~/FDS/FDS6/bin/fds

 Note: The compiled version of FDS uses static libraries. This means that the
executable file does not access the associated FDS libraries at run time so
there will be no need to incorporate the fds libraries in the LD_LIBRARY_PATH
environment variable. The use of dynamic compilation does not result in a
significant fds runtime burden because this only occurs when an fds process is
launched.

38

 Now copy the :~/FDS directory to the same location on the Slave0 node using
File Manager through the shared :~/Projects directory, or from the command
line.

 :~$ scp –r FDS <user_name>@Slave0:

Now we need to test the FDS install. The procedure is as previously stated for
the precompiled binary installation at Section 15.1.1 above.

15.3 FDS Installation Problems

All going well FDS will now be running reliably on a node and between nodes
under openmpi. If this is not the case then here are some things that you might
try.

• Check that your fds model actually runs on a single computer installation (or

use one of the NIST example models).

• Make sure that you have defined at least as many meshes as allocated
openmpi processes.

• Confirm that your model is in the shared directory and has appropriate file
permissions.

• Check you path variables to make sure that the openmpi and fds
executables can be found on all nodes with interactive and non-interactive
login.

• Search the GitHub Issues https://github.com/firemodels/fds-smv/issues for
related problems and solutions.

• Try changing the compiler optimization level reducing and increasing it.

• Try a different compiler.

• Review the MCA parameters that may be applicable to your openmpi
installation and the associated trouble-shooting notes at https://www.open-
mpi.org/faq/?category=troubleshooting.

39

16 Cloning

At this stage we should have FDS working under openmpi across IB between
just two nodes (Master and Slave0). While we could proceed with a new
installation on our other Slave nodes this is clearly inefficient.

Provided that our hardware is compatible we can simply clone our Slave0 node
to our other Slave nodes and make relatively minor adjustments to provide the
additional nodes with a unique identity.

Start by installing the HCA cards in the additional Slave nodes as described
above under Installing the IB Hardware, but do not connect these to the IB
switch.

Make a mirror of the Slave0 boot drive to an external HDD as described in
Local Node Backup above.

Install the drive mirror on the additional Slave nodes using the
Restore/Recovery procedure above.

We should now have configured our additional Slave nodes as bootable copies
of the Slave0 node.

16.1 Rename Node and Change IB IP Address

Note: the new nodes may not boot cleanly due to the nfs file shares and media
mounts. These should eventually time out (after 90 seconds or so) to a CLI
interface. If this occurs you will need to use a CLI editor such as nano to
modify the following files.

Rename the new Slave nodes by modifying the entry in /etc/hostname to the
corresponding names in the /etc/hosts file (in my case Slave1 and Slave2 as
described in Known Hosts procedure above):

 :~$ sudo gedit /etc/hostname

Change the IB assigned IP addresses by editing the
IPADDR_ib0=172.16.3.<x> line in /etc/network/interfaces to the corresponding
IP address in the /etc/hosts file:

 :~$ sudo gedit /etc/network/interfaces

16.2 Auto-Mounts

If you also have other internal SSHD or HDD you will need to add the auto-
mount settings for these drives. Ubuntu will have recognised that the hardware
specific UUID (Universal Unique IDentifier) of the drive in Slave0 is not present
in the new nodes and removed the auto-mount lines from /etc/fstab.

40

Identify the new node UUID’s, file system type and name for other internal
drives:

 :~$ sudo blkid

Edit the auto-mount :/etc/ fstab (File System Table) file on the new nodes to
reflect the actual hardware:

 :~$ sudo gedit /etc/fstab

and add a new line

UUID=<UUID> /media/<user-name>/Data ext4 defaults 0 0

Reboot the new nodes.

Connect the new nodes to the IB switch.

16.3 Testing

Test ssh connectivity between nodes using the procedure above for Testing
SSH. As a consequence of the cloning operation the ssh secure keys for the
new nodes should be identical to the Slave0 public/private pairs, but these will
need to be exercised to ensure that they operating without prompts (ie silent
login).

If there is any problem here then new key pairs should be generated on every
node, the file authorized_keys should be rebuilt on the Master node and then
copied back to the Slave nodes using the procedure described under Generate
Public/Private Key Pairs in Section 12.1 above.

The new nodes should now be tested using FDS under openmpi.

41

17 Project Benchmarks

The purpose of this upgrade was to improve the processing speed of my
dedicated FDS cluster and update FDS. Sure, the cluster does other stuff but
its main function is processing FDS fire models.

A good question to ask at this time is what was the speed improvement? In my
experience many improvement projects (and not just IT) are completed without
a valid measure of before and after performance so improvement (and cost
benefit) are never actually quantified.

Thanks to an earlier metrics study using FDS 6.2.0 I have a base from which I
can measure overall speed improvements with the upgrade.

The transition from FDS 6.2.0 to FDS 6.5.0 results in about a 7% increase in
processing time (a loss in performance). This was measured by running
identical FDS models under Intel compiled FDS 6.2.0 and 6.5.0 on identical
hardware. Note that software improvements often come with a processing time
penalty.

I also anticipate that there may be additional performance loss associated with
the relative computational efficiency of the compilers. Intel advertises a 30%
increase in efficiency over gnu for MPI (openmpi) processing. I cannot
measure this without actually purchasing the Intel compiler but I figure Intel
have some basis for this claim.

The actual speed improvement depends on the FDS model, and in particular
the computation/communication ratio, and on the core commitment of each
node. Model computation is less efficient with a higher
computation/communication ratio and if node cores are fully allocated.

For my cluster the IB upgrade has resulted in:

• a minimum speed improvement of approximately 10% for fully committed

cores with a large computational/communications ratio,

• a typical improvement of 30% (exceeding the anticipated 25%
improvement), and

• a maximum speed improvement of 42% for models with a low

computational/communications ratio and under-utilized cores on all nodes.

Some of my recent projects have required extensive modelling with individual
models taking almost a week to complete the simulation. The improvement
would have resulted in saving of at least one day per model, and probably
closer to two.

42

While the actual cost of hardware was minimal (less than $1,000) the time
required to work through the installation and resolve issues was significant. A
portion of this time was associated with the FDS upgrade from 6.2.0 to 6.5.2,
upgrading the OS, and running verification.

